Бiомаркери сепсису у дiтей
DOI:
https://doi.org/10.25284/2519-2078.1(66).2014.85581Ключові слова:
бiомаркери, сепсис, дiтиАнотація
Представлено данi щодо основних дiагностичних та прогностичних бiомаркерiв наявностi iнфекцiї у дiтей: С-реактивного бiлка (C-РБ), швидкостi осiдання еритроцитiв (ШОЕ), прокальцитонiну (ПКТ), iнтерлейкiну-6 (IЛ-6), iнтерлейкiну-1 антагонiста рецептора (IЛ–1ra), iнтерлейкiну-8 (IЛ-8) , фактора некрозу пухлини (ФНП), критичного рецептора експресiї мiєлоїдних клiтин (sTREM)-1, бiлкiв високої мобiльної групи (HMGB1). Незважаючи на численнi науково – дослiдницькi роботи з вивчення бiомаркерiв сепсису, їх використання в клiнiчнiй педiатричнiй практицi ще обмежене. Останнiм часом велику увагу придiляють вивченню дiагностичної цiнностi бiомаркерiв, що пов'язано з високою смертнiстю новонароджених i дiтей вiд сепсису.Посилання
Bone RC (1996) Sir Isaac Newton, sepsis, SIRS, and CARS. Crit Care Med; 24: 1125-8. https://doi.org/10.1097/00003246-199607000-00010
Kutko MC, Calarco MP, Flaherty MB, et al. (2003) Mortality rates in pediatric septic shock with and without multiple organ system failure. Pediatr Crit Care Med; 4(3): 333–7. https://doi.org/10.1097/01.pcc.0000074266.10576.9b
Odetola FO, Gebremariam A, Freed GL (2007) Patient and hospital correlates of clinical outcomes and resource utilization in severe pediatric sepsis. Pediatrics; 119(3): 487–94. https://doi.org/10.1542/peds.2006-2353
Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther; 69(3): 89–95. https://doi.org/10.1067/mcp.2001.113989
Meem M, Modak JK, Mortuza R, et al. (2011) Biomarkers for diagnosis of neonatal infections: A systematic analysis of their potential as a point-of-care diagnostics. J Glob Health;1(2):201–9.
Schelonka RL, Infante AJ (1998) Neonatal immunology. Semin Perinatol; 22(1): 2–14. https://doi.org/10.1016/s0146-0005(98)80003-7
Allen UD (2005) Factors influencing predisposition to sepsis in children with cancers and acquired immunodeficiencies unrelated to human immunodeficiency virus infection. Pediatr Crit Care Med; 6(Suppl 3): S80-6. https://doi.org/10.1097/01.pcc.0000161949.08227.ce
Roongsritong C, Warraich I, Bradley C (2004) Common causes of troponin elevations in the absence of acute myocardial infarction: incidence and clinical significance. Chest; 125(5): 1877-84. https://doi.org/10.1378/chest.125.5.1877
Enguix A, Rey C, Concha A, et al. (2001) Comparison of procalcitonin with C-reactive protein and serum amyloid for the early diagnosis of bacterial sepsis in critically ill neonates and children. Intensive Care Med; 27(1): 211–5. https://doi.org/10.1007/s001340000709
Küster H, Weiss M, Willeitner AE, et al. (1998) Interleukin-1 receptor antagonist and interleukin-6 for early diagnosis of neonatal sepsis 2 days before clinical manifestation. Lancet; 352(9136):1271–7. https://doi.org/10.1016/s0140-6736(98)08148-3
Li JJ, Zhang T. (2013) [Diagnostic value of serum СRP and procalcitonin levels in children with bloodstream infection-associated sepsis and septic infection at other sites]. Zhongguo Dang Dai Er Ke Za Zhi;15(3):212–5.
Magudumana MO, Ballot DE, Cooper PA, et al. (2000) Serial interleukin 6 measurements in the early diagnosis of neonatal sepsis. J Trop Pediatr; 46(5): 267–71. https://doi.org/10.1093/tropej/46.5.267
Sanders S, Barnett A, Correa-Velez I et al. (2008) Systematic review of the diagnostic accuracy of C-reactive protein to detect bacterial infection in nonhospitalized infants and children with fever. J Pediatr; 153(4): 570-4. https://doi.org/10.1016/j.jpeds.2008.04.023
Jeschke MG, Finnerty CC, Kulp GA, et al. (2013) Can we use C-reactive protein levels to predict severe infection or sepsis in severely burned patients? Int J Burns Trauma;3(3):137-43.
Barati M, Alinejad F, Bahar MA, et al. (2008) Comparison of WBC, ESR, CRP and PCT serum levels in septic and non-septic burn cases. Burns; 34(6): 770-4. https://doi.org/10.1016/j.burns.2008.01.014
Aydin B, Dilli D, Zenciroğlu A, et al. (2013) Comparison of a rapid bed-side test with a central laboratory analysis for C-reactive protein in newborn infants with suspicion of sepsis. Clin Lab; 59(9–10):1045–51. https://doi.org/10.7754/clin.lab.2012.120923
Dornbusch HJ, Strenger V, Sovinz P, et al. (2008) Non-infectious causes of elevated procalcitonin and C-reactive protein serum levels in pediatric patients with hematologic and oncologic disorders. Support Care Cancer; 16(9): 1035-40. https://doi.org/10.1007/s00520-007-0381-1
Sherwin C, Broadbent R, Young S, et al. (2008) Utility of Interleukin-12 and Interleukin-10 in Comparison with Other Cytokines and Acute-Phase Reactants in the Diagnosis of Neonatal Sepsis. Am J Perinatol; 25(10): 629–36. https://doi.org/10.1055/s-0028-1090585
Simon L, Saint-Louis P, Amre DK, et al. (2008) Procalcitonin and C-reactive protein as markers of bacterial infection in critically ill children at onset of systemic inflammatory response syndrome. Pediatr Crit Care Med; 9(4): 407–13. https://doi.org/10.1097/pcc.0b013e31817285a6
Boonkasidecha S, Panburana J, Chansakulporn S, et al. (2013) An optimal cut-off point of serum C-reactive protein in prediction of neonatal sepsis. J Med Assoc Thai.; 96, Suppl 1:S65–70.
Pulliam PN, Attia MW, Cronan KM (2001) C-reactive protein in febrile children 1 to 36 months of age with clinically undetectable serious bacterial infection. Pediatrics; 108(6): 1275–9. https://doi.org/10.1542/peds.108.6.1275
Lacour AG, Gervaix A, Zamora SA, et al. (2001) Procalcitonin, IL-6, IL-8, IL-1 receptor antagonist and C-reactive protein as identificators of serious bacterial infections in children with fever without localising signs. Eur J Pediatr; 160(2): 95–100. https://doi.org/10.1007/s004310000681
Berger RM, Berger MY, van Steensel-Moll HA, et al. (1996) A predictive model to estimate the risk of serious bacterial infections in febrile infants. Eur J Pediatr; 155(6): 468–73. https://doi.org/10.1007/bf01955183
Sakha K, Husseini MB, Seyyedsadri N (2008) The role of the procalcitonin in diagnosis of neonatal sepsis and correlation between procalcitonin and C-reactive protein in these patients. Pak J Biol Sci; 11(14): 1785–90. https://doi.org/10.3923/pjbs.2008.1785.1790
Meisner M, Rauschmayer C, Schmidt J, et al. (2002) Early increase of procalcitonin after cardiovascular surgery in patients with postoperative complications. Intensive Care Med; 28(8): 1094–102. https://doi.org/10.1007/s00134-002-1392-5
Bhattacharyya K, Bandyopadhyay M, Karmakar BC et al. (2012) A study on blood culture positivity and C-reactive protein variability in neonatal septicaemia at neonatal intensive care unit of a tertiary care hospital. J Indian Med Assoc;110(12):920–1, 925.
Hengst JM (2003) The role of C-reactive protein in the evaluation and management of infants with suspected sepsis. Adv Neonatal Care; 3(1): 3–13. https://doi.org/10.1053/adnc.2003.50010
Parida SN, Verma IC, Singh MB, Thomas S (1980) Evaluation of micro erythrocyte sedimentation rate in the diagnosis of neonatal sepsis. Ind J Pediatr; 47(388): 381-4. https://doi.org/10.1007/bf02759832
Greer JP, Foerrster J, Rodgers G, et al. (2008) Wintrobe's Clinical Hematology. 12th ed. Philadelphia: Lippincott, Williams, and Wilkins.
Meisner M, Adina H, Schmidt J (2006) Correlation of procalcitonin and C-reactive protein to inflammation, complications, and outcome during the intensive care unit course of multiple-trauma patients. Crit Care; 10(1): R1. https://doi.org/10.1186/cc3910
Dubos F, Korczowski B, Aygun DA, et al. (2008) Serum procalcitonin level and other biological markers to distinguish between bacterial and aseptic meningitis in children: a European multicenter case cohort study. Arch Pediatr Adolesc Med; 162(12): 1157-63. https://doi.org/10.1001/archpedi.162.12.1157
Tseng JS, Chan MC, Hsu JY, et al. (2008) Procalcitonin is a valuable prognostic marker in ARDS caused by community-acquired pneumonia. Respirology; 13(4): 505–9. https://doi.org/10.1111/j.1440-1843.2008.01293.x
Fioretto JR, Martin JG, Kurokawa CS, et al. (2008) Interleukin-6 and procalcitonin in children with sepsis and septic shock. Cytokine; 43(2): 160-4. https://doi.org/10.1016/j.cyto.2008.05.005
Andreola B, Bressan S, Callegaro S, et al. (2007) Procalcitonin and C-reactive protein as diagnostic markers of severe bacterial infections in febrile infants and children in the emergency department. Pediatr Infect Dis J; 26(8): 672–7. https://doi.org/10.1097/inf.0b013e31806215e3
Adib M, Bakhshiani Z, Navaei F, et al. (2012) Procalcitonin: a reliable marker for the diagnosis of neonatal sepsis. Iran J Basic Med Sci;15(2): 777-82.
Ucar B, Yildiz B, Aksit MA, et al. (2008) Serum amyloid A, procalcitonin, tumor necrosis factor-alpha, and interleukin-1beta levels in neonatal late-onset sepsis. Mediators Inflam: 737141. https://doi.org/10.1155/2008/737141
Hammer S, Meisner F, Dirschedl P, et al. (2000) Procalcitonin for differential diagnosis of graft rejection and infection in patients with heart and/or lung grafts. Intensive Care Med; 26 (Suppl 2): S182-6. https://doi.org/10.1007/bf02900735
Liu SF, Yuan GP, Yang J, et al. (2012) [Procalcitonin as a predictor of trauma severity and post-traumatic sepsis in children]. Sichuan Da Xue Xue Bao Yi Xue Ban; 43(5): 706–10.
Prashant A, Vishwanath P, Kulkarni P, et al. (2013) Comparative assessment of cytokines and other inflammatory markers for the early diagnosis of neonatal sepsis-a case control study. PloS One; 8(7):e68426. https://doi.org/10.1371/journal.pone.0068426
Kitanovski L, Jazbec J, Hojker S, Derganc M. (2014) Diagnostic accuracy of lipopolysaccharide-binding protein for predicting bacteremia/clinical sepsis in children with febrile neutropenia: comparison with interleukin-6, procalcitonin, and C-reactive protein. Support Care Cancer; 22(1): 269–77. https://doi.org/10.1007/s00520-013-1978-1
Lacour AG, Gervaix A, Zamora SA, et al. (2001) Procalcitonin, IL-6, IL-8, IL-1 receptor antagonist and C-reactive protein as identificators of serious bacterial infections in children with fever without localising signs. Eur J Pediatr; 160(2):95–100. https://doi.org/10.1007/s004310000681
Strait RT, Kelly KJ, Kurup VP (1999) Tumor Necrosis Factor-alpha , Interleukin-1beta , and Interleukin-6 Levels in Febrile, Young Children With and Without Occult Bacteremia. Pediatrics;104(6):1321-6. https://doi.org/10.1542/peds.104.6.1321
Diepold M, Noellke P, Duffner U, et al. (2008) Performance of Interleukin-6 and Interleukin-8 serum levels in pediatric oncology patients with neutropenia and fever for the assessment of low-risk. BMC Infect Dis; 8: 28. https://doi.org/10.1186/1471-2334-8-28
Fischer JE, Benn A, Harbarth S, Nadal D, Fanconi S (2002) Diagnostic accuracy of G-CSF, IL-8, and IL-1ra in critically ill children with suspected infection. Intensive Care Med; 28(9): 1324–31. https://doi.org/10.1007/s00134-002-1423-2
Blackwell TS, Christman JW (1996) Sepsis and cytokines: current status. Br J Anaesth; 77(1): 110–7. https://doi.org/10.1093/bja/77.1.110
Lehrnbecher T, Venzon D, de Haas M, et al. (1999) Assessment of Measuring Circulating Levels of Interleukin‐6, Interleukin‐8, C‐Reactive Protein, Soluble Fcy Receptor Type III, and Mannose‐Binding Protein in Febrile Children with Cancer and Neutropenia. Clin Infect Dis; 29(2): 414–9. https://doi.org/10.1086/520224
Vermont CL, Hazelzet JA, de Kleijn ED, et al. (2006) CC and CXC chemokine levels in children with meningococcal sepsis accurately predict mortality and disease severity. Crit Care; 10(1): R33. https://doi.org/10.1186/cc4836
Carrol ED, Thomson AP, Jones AP, et al. (2005) A predominantly anti-inflammatory cytokine profile is associated with disease severity in meningococcal sepsis. Intensive Care Med; 31(10): 1415–9. https://doi.org/10.1007/s00134-005-2787-x
Franz AR, Bauer K, Schalk A, et al. (2004) Measurement of interleukin 8 in combination with C-reactive protein reduced unnecessary antibiotic therapy in newborn infants: a multicenter, randomized, controlled trial. Pediatrics; 114(1): 1-8. https://doi.org/10.1542/peds.114.1.1
Umlauf VN, Dreschers S, Orlikowsky TW (2013) Flow cytometry in the detection of neonatal sepsis. Int J Pediatr;2013: 763191. https://doi.org/10.1155/2013/763191
Sugitharini V, Prema A, Berla Thangam E (2013) Inflammatory mediators of systemic inflammation in neonatal sepsis. Inflamm Res; 62(12): 1025–34. https://doi.org/10.1007/s00011-013-0661-9
Santolaya ME, Alvarez AM, Avilés CL, et al. (2013) Prospective validation of a risk prediction model for severe sepsis in children with cancer and high risk fever and neutropenia. Pediatr Infect Dis J. https://doi.org/10.1097/inf.0000000000000015
Zidi I, Mestiri S, Bartegi A, Amor NB (2010) TNF-alpha and its inhibitors in cancer. Med Oncol; 27(2): 185–98. https://doi.org/10.1007/s12032-009-9190-3
Njau F, Wittkop U, Rohde M, et al. (2009) In vitro neutralization of tumor necrosis factor-alpha during Chlamydia pneumoniae infection impairs dendritic cells maturation/function and increases chlamydial progeny. FEMS Immunol Med Microbiol; 55(2): 215–25. https://doi.org/10.1111/j.1574-695x.2008.00512.x
Silveira RC, Procianoy RS (1999) Evaluation of interleukin-6, tumour necrosis factor-alpha and interleukin–1beta for early diagnosis of neonatal sepsis. Acta Paediatr; 88(6): 647–50. https://doi.org/10.1080/08035259950169314
Dollner H, Vatten L, Austgulen R (2001) Early diagnostic markers for neonatal sepsis Comparing C-reactive protein, interleukin-6, soluble tumour necrosis factor receptors and soluble adhesion molecules. J Clin Epidemiol; 54(12): 1251–7. https://doi.org/10.1016/s0895-4356(01)00400-0
Doellner H, Arntzen KJ, Haereid PE, et al. (1998) Increased serum concentrations of soluble tumor necrosis factor receptors p55 and p75 in early onset neonatal sepsis. Early Hum Dev; 52(3): 251-61. https://doi.org/10.1016/s0378-3782(98)00031-0
Kumar S, Rizvi M (2010) Serum tumor necrosis factor alpha and C-reactive protein in pediatric patients with sepsis and its correlation with microbiologic findings. Indian J Pathol Microbiol;53(3): 494–7. https://doi.org/10.4103/0377-4929.68290
Santana RC, Garcia-Munoz F, Reyes D, et al. (2003) Role of cytokines (interleukin–1beta, 6, 8, tumour necrosis factor-alpha, and soluble receptor of interleukin–2) and C- reactive protein in the diagnosis of neonatal sepsis. Acta Paediatr; 92(2): 221–7. https://doi.org/10.1111/j.1651-2227.2003.tb00530.x
Phumeetham S, Chat-Uthai N, Manavathongchai M, Viprakasit V (2012) Genetic association study of tumor necrosis factor-alpha with sepsis and septic shock in Thai pediatric patients. J Pediatr (Rio J);88(5):417–22. https://doi.org/10.2223/jped.2216
Ventetuolo CE, Levy MM, Ventetuolo CE, Levy MM (2008) Biomarkers: diagnosis and risk assessment in sepsis. Clin Chest Med; 29(4): 591-603. https://doi.org/10.1016/j.ccm.2008.07.001
Routsi C, Giamarellos-Bourboulis EJ, Antonopoulou A, et al. (2005) Does soluble triggering receptor expressed on myeloid cells-1 play any role in the pathogenesis of septic shock? Clin Exp Immunol; 142(1): 62–7. https://doi.org/10.1111/j.1365-2249.2005.02887.x
Gibot S, Cravoisy A, Kolopp-Sarda MN, et al. (2005) Time-course of sTREM (soluble triggering receptor expressed on myeloid cells)–1, procalcitonin, and C-reactive protein plasma concentrations during sepsis. Crit Care Med; 33(4): 792-6. https://doi.org/10.1097/01.ccm.0000159089.16462.4a
Dimopoulou I, Orfanos SE, Pelekanou A, et al. (2009) Serum of patients with septic shock stimulates the expression of Trem-1 on U937 monocytes. Inflamm Res; 58(3): 127–32. https://doi.org/10.1007/s00011-008-7039-4
Gibot S, Buonsanti C, Massin F, et al. (2006) Modulation of the triggering receptor expressed on the myeloid cell type 1 pathway in murine septic shock. Infect Immun; 74(5): 2823–30. https://doi.org/10.1128/iai.74.5.2823-2830.2006
Bopp C, Hofer S, Bouchon A, et al. (2009) Soluble TREM-1 is not suitable for distinguishing between systemic inflammatory response syndrome and sepsis survivors and nonsurvivors in the early stage of acute inflammation. Eur J Anaesthesiol; 26(6): 504–7. https://doi.org/10.1097/eja.0b013e328329afca
Kevan EN, Simmons JR, Kocoshis SA, et al. (2011) sTREM-1 and LBP in central venous catheter-associated bloodstream infections in pediatric intestinal failure. J Pediatr Gastroenterol Nutr;53(6): 627–33. https://doi.org/10.1097/mpg.0b013e3182294fcc
Adly AA, Ismail EA, Andrawes NG, El-Saadany MA (2013) Circulating soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) as diagnostic and prognostic marker in neonatal sepsis. Cytokine;65(2):184-191. https://doi.org/10.1016/j.cyto.2013.11.004
Garofoli F, Borghesi A, Mazzucchelli I, et al. (2010) Preterm newborns are provided with triggering receptor expressed on myeloid cells-1. Int J Immunopathol Pharmacol;23(4): 1297–301. https://doi.org/10.1177/039463201002300439
Sama AE, D'Amore J, Ward MF, et al. (2004) Bench to bedside: HMGB1 — a novel proinflammatory cytokine and potential therapeutic target for septic patients in the emergency department. Acad Emerg Med; 11(8): 867–73. https://doi.org/10.1197/j.aem.2004.03.011
Štros M (2010) HMGB proteins: interactions with DNA and chromatin. Biochim Biophys Acta; 1799(1–2): 101–13. https://doi.org/10.1016/j.bbagrm.2009.09.008
Dinarello CA, Gelfand JA, Wolff SM (1993) Anticytokine strategies in the treatment of the systemic inflammatory response syndrome. JAMA; 269(14): 1829–35. https://doi.org/10.1001/jama.1993.03500140081040
Wang H, Bloom O, Zhang M, et al. (1999) HMG-1 as a late mediator of endotoxin lethality in mice. Science; 285(5425): 248–51. https://doi.org/10.1126/science.285.5425.248
Wang H, Yang H, Czura CJ, et al. (2001) HMGB1 as a late mediator of lethal systemic inflammation. Am J Respir Crit Care Med; 164(Pt1): 1768–73. https://doi.org/10.1164/ajrccm.164.10.2106117
Ulloa L, Ochani M, Yang H, et al. (2002) Ethyl pyruvate prevents lethality in mice with established lethal sepsis and systemic inflammation. Proc Natl Acad Sci USA; 99(19): 12351-6. https://doi.org/10.1073/pnas.192222999
Yang H, Ochani M, Li J, et al. (2004) Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc Natl Acad Sci USA; 101(1): 296–301. https://doi.org/10.1073/pnas.2434651100
Pavare J, Grope I, Kalnins I, Gardovska D (2010) High-mobility group box-1 protein, lipopolysaccharide-binding protein, interleukin-6 and C-reactive protein in children with community acquired infections and bacteraemia: a prospective study. BMC Infect Dis;10:28. https://doi.org/10.1186/1471-2334-10-28
Wong HR, Cvijanovich N, Wheeler DS, et al. (2008) Interleukin-8 as a stratification tool for interventional trials involving pediatric septic shock. Am J Respir Crit Care Med; 178(3): 276-82. https://doi.org/10.1164/rccm.200801-131oc
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2014 В. І. Снiсарь
Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial 4.0 International License.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
a. Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution-NonCommercial 4.0 International License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
b. Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
c. Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).